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TORSIONAL RIGIDITY OF CANTILEVER WINGS
WITH CONSTANT SPAR AND RIB SECTIONS.*

By Giuseppe Gabrielli.

During recent years several very thorough and interesting
treatises have been devoted to the investigation of systems of
spars and ribs. These researches represent considerable prog-—
ress, especially for the statics of cantilever wings. From
them we have obtained a clearer idea of the effect of the ribs
and have also been enabled, in a few special cases, to calcu-
late, by relatively simple methods, the magnitude of the prine-
cipal effect of the uniom of the spars and ribs, namely, the
reduction of the bending moment at the fixed ends of the spars.

The present paper treats less of the effect of the union
than of its influence on the torsional rigidity of the wing.
The calculations are carried out for a two-spar wing of con-
stant cross section, in which the ribs are replaced by a con-
tinuous member of constant rigidity (assumption of an infinite
number of ribs). The bending rigidity of the ribs is assumed
to be very great in comparison with their torsional rigidity,

as is the case in actual practice.

*"Jeber die Torsionssteifigkeit eines freitragenden Flﬁgels mit
konstantem Holm— und Rippenquerschnitt" from Luftfahrtforschung,
June 286, 1928, pp. 79-90.
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The case under consideration is strongly idealized. 1In
reality the bending and torsional rigidities of the spars very
throughout the length of the wing. Nevertheless, the accurate
numerical evaluation of this idealized case is of some inter-
est, because it gives us an accurate idea of how the ratio of
the bending to the tcrsional rigidity of the spars affects
the torsional rigidity of the wing as a whole. Above all, it
enables us to tell when the torsion of the whole wing may be
regarded merely as the result of the various flexures of the
spars and when, on the other hand, the wing may be regarded
simply as a twisted girder., In this sense the designer can
make approximate calculations, even in the most complicated
cases, on the basis of the following method. |

Before proceeding to the calculation, we will take a look
at the reports which have already appeared, especially during

the preparation of the present paper.

le We find an article by Ballenstedt.* He discusses a
wing structure with two like spars of constant cross section,
and calculates, by the usual methods for statically indetermi-
nate systems, the effect of the ribs in the case of unsymmetri-
cal loading of the spars. The wing considered had nine 1ik
ribs. It was assumed that the middle rib was fixed, so that

the calculation: simply concerns a wing structure consisting of

*"Der Einfluss der Spante zuf die Festigkelt der Holme." Tech-
nische Berichte der Flugzeugmeisterei, Vol. III, (1917-1918),
pPpe 100-111.



N.A.C.A. Technical Memorandum No. 520 3

two spars and four ribs. On the assumption that the same load
was applied at every joint, Ballenstedt calculates the course
of the bending and torsional moments along the spars and shows
the diminution of the maximum bending moment due to the union

of the ribs.

8, Dr,., Thalau's papers contain much valuable material.*
He also discusses a rigidly supported cantilever wing, consist-
ing of two spars and ribs. He defines this structure as a lat-
tice girder. He chooses, as the expression of the reciprocal
effect of the union of the spars, the diminution of the bending
moment at the point of fixatiom of the spars (fixation cross
section) and shows that the end rib has the greatest effect and
that the other ribs have only a negligible effect on the bend-
ing moment at the point of fixation. Hence he investigates
especlially the shearing forces produced by the end rib in the

case of like tapering spars..

3. Biezeno, Koch and Koning replace the rib union by a
continuous union effect, as is done in the present paper.**
They disregard the torsiomal rigidity of the ribs and consider
them as inflexible. They give an approximatiom method for the

case when the rigidities of the two spars have the same ratio

*"Zur Berechnung freitragender Flugzcugfltgel." Z.F.M., 1924,
P«103; 1935, pp.86-87. M"ucber die Verbundwirkung von Rirpen
1m'fre1tragenden zweiholmigen und verspanungslosen Flugzeug-
flugel° ZeF.M., 19235, No. 30.

**"Jeber die Berechnung von freitragenden Flugzeugflugeln."
Zeitschrift flr Mech. und angew. Math. 1926, pp. 92105,
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in every cross section. Lastly, they investigate a wing with
constant spar and rib cross sections on the assumption of uni-
form loading and calculate the diminution in the bending moment

due to the union,

4. Reissner investigates the case of a wing situated
above the fuselage and having two like spars, on the assumption
that the stresses are comstant in every cross sectiom of the
spars (wings of constant strength).¥ Reissner obtains exceed-
ingly simple formulas on the distribution.of the bending moment
and on the reciprocal reduction of the load on the spars, for
both symmetrical and unsymmetrical loading. For this case we
can obtain. a simple expression of the magnitude, which may be
defined as the torsional rigidity of the whole wing., Reissner
then employs this principle to determine the 1limits of static

stability of wings ¢xposed to the action of the air.

5. Von Karman, in the winter semester of 1925/6 in his
lectures on "Introduction to the Study of Airplanes," gave the
general equations likewise on the asgsumption of an iﬁfihite
number of ribs, but without the hypothesis of inflexible ribs
and with consideration of the torsional rigidity of the ribs
for a two-spar system and showed the influence lines for the
loading of a spar by a single load applied to the other spar.
We shall follow Von Karman's lectures in the application of

the differential equetions.

*'Weuere Probleme aus der Flugzeugstatik, Verbundwirkung des
Flugelkdrpers." z,7,M., 1926, pp. 181-185.
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Bending and Torsion of a Cantilever Wing

We investigated an unbraced cantilever wing stTructure,
formed by two spars of uniform cross section and a number of
equal ribs distributed at regular intervals along the spars.
The structure was rigidly supported at one end. For the fol-
lowing calculation, however, we assumed an infinite number of
elementory ribs regularly distributed along the spars and re-
placing, in their effect, the ribs actually present. The ribs
were assumed to be inflexible, but to have finite torsional
rigidity with respect to their longitudinal axes.

If bcth spars were stressed by separate or distributed
loads proportional to the bending rigidities of the correspond-
ing spars, the latter would be equally deflected. In this case
the behavior of the spars was not affected by the ribs.

Let p, (x) and p, (x) denote the loads distributed
along the spars; A, and A,, their corresponding bending
rigidities; and x, the coordinates along the spars. If we

then have the relation

p, (x) p, (x)
J S WA (1?

the wing is simply bent. By a correspondimg arrangement of
the spars with respect to the wing chord, the above condition
can be fulfilled in horizontal flight. This condition is not
fulfilled in diving and gliding €Tight, due to the travel of

the center of pressure, and both spars are twisted about their
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longitudinal axis due to their union through the ribs. In other
words, they are stressed simultaneously with respect to both
bending and torsion. From the assumption of absolute inflexi-
bility of the ribs, it follows directly that the angles of
torsiom of both spars have the same value in every wing section.
We call this angle the angle of torsion of the wing in the cor-
responding cross sections.

If the resultant of the external forces for all the wing
sections lies between the two spars and divides the distance
b (Fig. 1) into two parts b, and b,, so that b,/b, = A/4,,
the wing then undergoes a simple bending, The point 0O is
called the "elastic center" of the given wing section. The line
connecting the elastic centers of all the wing sections is
called the "elastic axis" of the wing. Obviously, the location
of the elastic axis of auwing depends on the location of the
spars with respect to the wing chord and on the bending rigidity
of the spars. The elastic axis is a straight line in wings
with constant or linearly diminishing bending rigidity.

If we consider a wing with spars of constant rigidity and
subjected to a load p distributed uniformly throughout their
length, the wing is then subjected to a uniformly distributed
load of 2 p and a moment of p (b; - by)e If we assume, on
the other hand, that the spar cross sections, belonging to the
same wing section, are subjected to two equal and opposite

forces, the elastic axis will then suffer no deflection., This



N.A.C.A. Technical Memorandum No. 580 7

is decignated as the case of simple torsiom. It is obvious
that the general case can then be limited, by a corresponding
shifting of the load, to these two individual cases. Since the
calculation of the simple bending offers no difficulty, we can

1limit our calculations to the case of simple torsion.
1Y

The Torsional Rigidity of the Wing Section and
of the Wing Itself

While, for an elastic girder (generally of variable cross
section) the ratio between the torsion per unit length and the
torsional moment in each cross section has a value dependent
only on the cross section itself and characterizing the tor-
sional rigidity of the section, this is not the case for a wing
with spars of constant cross section.

In fact, the torsional angle ¢ of a wing does not depend
alone on the torsional moments in the two-spar sections, but
also on the flexibility of the spars. The torsional moment is,
in fact, equilibrated in every cross section in part by the tor-
sional moments of the spars and also by the moment of the shear-
ing forces in the spar sections. Obviously, these depend on
the flexibility of the spars. Since the flexibility of the
spars depends on the load distribution, it follows that the val-
ue §' = dd/dx (x being the coordinate along the wing axis)
in each wing section depends not only on the magnitude'of the -

torsional moment, but also on the load distribution. In other
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words, the value §' for each section of a cylindrical girder
is proportional to the prevailing torsional moment, independ-
ently of the value of the moment My in the other sections of
the girder. For a wing section, however, §' depends on the
value and on the distributionvof the torsional moment along the
wing.

For every wing sectiom we con therefore define by the

equation
Mt = - B! (2)

a torsiomal rigidity B, which, however, depends both om the
characteristic quantities (bending and tecrsional rigidity) for
the spars and ribs and also on the distribution of the torsion-

al moment along the wing. Furthermore, by the expressiom

;)
Bf=1‘%£. (5)
we can introduce a torsignal rigidity Bs for the whole wing.
Thereby 1t 1s the mean torsional moment of the wingy; 1, its
length; and & its distortion,

We will undertake to determine the values B and By for
a wing of constant spar and rib section in the following cases.

1. Ving with a torsional moment increasing linecarly from
the tip toward the root.

Se Wing with a torsidnal moment applied at the tip.

In what follows it will be shown for both cases, to what

extent the torsional moment in each wing sectiom is balanced

by the torsiom of the spars and by the shearing forces in the
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spar section.
The Differential Equations of the Spar System on

the Assumption of Inflexible Ribs

We place the x-axis of the coordinate parallel to the
spars with the origim at the wing tip, the direction from the
Wing tip toward the wing root being considered positive. The
downward directiom of the axes ¢, and ¢, is considered posi-
tive (Fig. 3). The following symbols are used.

Br, the torsional rigidity of a ridb per unit length;

n = 1/x, the number of ribs per centimeter length of
the spars;
B, the torsional rigidity of the ribs per centimeter
length of the spars (B = n Byp);

{, and {,, the bending deflections of the front and rear
spars, considered positive downward (¢ = {, - {3);

9, the torsional angle of any wing section with the ab-
scissa x (i.e., the torsional angle of the spars
with respect to the fixed root section, read posi-
tively from the wing tip in the direction traveled
by the hands of a clock);

A, and A,, +the respective torsional rigidities of the
front and rear spars;

b, the constant distance between the spars;

M, and p,, the torsional moments per centimeter length,
which the ribs transmit to the spars, these moments -
being considered positive in the directiom of the
motion of the hands of a clock as seen from the wing
tip;

T, and T, the bending moments per centimeter length,
which the ribs transmit to the spars. The same num-
bers with opposite signs represent the torsional mo-
ments at the ends of the ribs., 7, and T2 (applied
to the spars) are considered positive, when they act
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in the direcction which conveys the positive ¢ axis
in the positive direction of the x axis (Fig. 3);

p, and p,, the external loading of the spars per centi-
meter length;

a, and q,, the loads per centimeter length, which the
ribs exert on the spars due to the distortion: of the
wing.

a) The equilibrium of the ribs.- The conditiom: of equilib-

rium for the forces (Fig. 3) reads g, + 4y = 0 and for the

moments ) -
M, + -
q, = _1_,5__”3 (4)
From these two equations we obtaig
P
q 2 e _______.._..__1 2 (5)
2 b

The condition of equilibrium for an elementary rib, with

regpect to rotation about its own axis, is

that 1is,
Tl T e 'T'2 = T (6)

b) The equations for the bending of the spars.- for any

- cross sectiom (abscissa x) of the front spar, the fundamental

equation is
2
d Cl' _
1 b
d x? 1

in which M, denotes the moment of the forces acting, between

the wing tip and the given cross section, on the center of grav-
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ity of said cross sectione

If we designate by Q,

the shearing force in the given

cross sectiomnm and consider it positive when directed upward

(Fig. 2), we have

and consequently, -
LT e e (7)
Moreover, (Fig. 3) )
221‘=—-(p1+q1)
and hence . - -
Alixil=pl+ql+%:z (8)

For the rear spar,

wise obtain
A,

and
Ay

with the aid of equation (6), we like-

a3 ¢,

d3=—Q2—T (73')
X

a4 ar

el va, - o (8a)

¢) The torsional equations for the spars.- For the front

spar the torsional equatiom Treads

By, 9' = = M, in which M,

denotes the torsional moment (about the center of gravity of

the given cross section) of all the forces acting on the spar

between this section and the wing tip.

the hypotheses concerning the positive direction of 4§,

Taking into account

we
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must consider M, positive when, as seen from the wing tip,
it acte in the direction traveled by the hands of a clock. It
is aM, /dx = u,, in which p, is the torsional load of the
front spar (and also the bending load of the rTibs), considered
positive when acting in the directiom of motion of the hands

of a clock, as seen from the wing tip. We obtain

By ¥ = -t M
and, for the rear spar, By & = — Py The additiom of these
two equations gives
(By +Bz) 8" = = (W, + Mz).

With the aid of this equation we can transform equations (4)

and (5) into

+ B
q, = - EL_B__E " (4a)
and
B. + B
q, = =2 5 2 (5a)

d) Relation between the Flexure ¥ and the

Torsional Angle 4§ of the Spars
From Figure 3, it follows that

P 4
$ = - ==z (%)



<
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e) Relation between the Flexure of the Spars and

the Torsion of the Ribs

13

Bearing in mind (Fig. 2) that the angle of torsion of a

rib of the length b 1is given by

at every point of the abscissa x (cf. equation (9)), we ob-

taim
LB dt
b dx
and, from this,
ar B d°¢
dx b dx°

If we introduce the value of dT/dx

and (8a), we obtain

a* ¢ B
Ay g Xi =P, +q * s
g i B
A2 3 ji =P 4 -3

On combining these two equations, we obtain

da* ¢ a* ¢ 1 1
1 2 o~ — s R
d. :X'.4 d. X4 Al‘ pl Ae pa 1 q
14 48 &
A ° b dx®

(10)

(11)

into equation (8)

& ¢
dx®

¢
dx®

?
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If we put L =1 + 1 and consider equations (4a), (5a),
A wi W

and (9), we obtain

B, +B, + BD 1 P
8?"'- 1 2 1y + = ot W -——2-\ -

For simplification we put

¥ =B
AV
and ~ -
K® =1 Eb _ _ 1+ _3r
B, + B, d B, + B
and obtain
ST g2 2 ,3”-{-}_ EL-.%.\:O, (12)
b\a, A/

- as the final result.

Relation between the Shearing Forces and Torsional Moments
in the Cross Sections of the Wing Spars

Subjected to Simple Torsion

The-torsional moment is held in equilibrium in every wing
section .by the shearing forces and torsionzal moments prevailing
in the section. We will consider a wing sulbgjected to simple.
torsion, My TDeing the torsional moment in any wing section.
The condition of equilibrium for the portion of the wing includ-
ed between the given sectiom and the wing tip (the forces and
moments in this portion acting in the opposite direction to that

indicated in Figure 4) is Q, = - Q, = Q for the forces and
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Qb - ¥, - ¥, + Mt =0
for the moments. Since
I, = - B¢ and M, = - B, &'
it follows that i _
—Qb + (B, + B,) #' + ¥t = O.

It now follows from equations (7) and (7a) that

@¢ o at @ ¢
' g % = ke 735
and therefrom .
1
Q:_.Al ‘51 —AECQ"'_EC'
2 b
Ay C:L’“'"Az szn = 0.
According to system of notation employed
Al gl!!z Al (Cl"' - czlvv)
Ae Cl'l — Ae (glfll —.(gz"')

From (15) and (16) we obtain by subtractiom
....Al C'” - (Al + A.e)ggllt .

From (15) and (17) we obtain by addition

Ae C”' —_ (Al + Az)ngll

from which it follows that '
t A A
Cl !l= 2 Clll C2II'=~ 1

1

o' f®

A, + A

15

(13)

(18)

(17)
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Multiplying by A, and A, we obtain

Al lelt - A C"' Ag cg!" = - A. c1l|’
whence
AC,” _ Al jrl, - Az gg'll
2 [ ]

Equation (14) then becomes

Q=-ag+E g

o'lm

and, with the use of equation (9)

Q=Ab19'”-8'8'

and the condition of equilibrium (13) becomes

'8'"'—- l (Bb;B +B)3l=llt
Ab2 1 2 A‘b2

or, with the use of the chosen abbreviation,

ST KPR 8 = ;ﬂbe (18)
From equetion (13) we obtain
. -
Q = EL__3§_3'+ %E (19)

b b

~
-~

This equation shows the relation betweer the shearing forces

and torsional moments of the spars in every wing section.
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Case I. Spars with Uniformly Distributed Load
(p, and p, being constants)
The fundamental equation (12) holds good for any distribu-
tion of the loads p, and p, along the spars, hence also for
the case when a single force acts on the wing tip. We will con-

sider the case when the spar loading is uniformly distributed,
P2
Ay /

of the differential equation is then a constant. The general

1
i.e., when p, and p, are constants. The member T <§L -
1

equation for this case is

KAx -KAx
=20, e + C, € + Cy x +
1
Ca +.*_____5<fﬁ._ P2y,
8b X° M N4A, A/

in which the four integration constants ¢,, Oz, Cs, and C,

are to be determined from the following limiting conditions.

For x =1 we have, as a result of the rigid fixation, 4 =0
and 3' =0, instead of x = 0, that is, at the wing tip we
must have o' = 0, due to the vanishing bending moment ¢''.

If it is noted that the torsional moment is zero at the wing tip,

it follows for equationm (18) that

‘&lll ___Ka )\2 19! - O
X=0 X=0

is the fourth limiting condition.
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For these limiting conditions the constants become

6 =1 (B _ P\ KMD+ M

* 2b X N® \A, A,/ K® 2\® cosh K A 1

; =__1__(2L_.1.0_2_\KH-8K“

® 20 K® A® M, 4,7 K ¥ coshK Al

03:-0

o, = L (B oR) = {x2® ® cosh KAi-
2b K A “A, A,/ K® A® cosh K A 1! -

—BK)\lsinhK).l—Z},
and we have
Py _ D2
_ LA ~ -
3 2 cosh KA (1 - x) —2 XX 1 (sinh KNl

" 2b K* M cosh K M U

- sinh X A x) + K2 ¥ (¥ - x°) costhz—B}'

When 4:1’—2 then & = O.

Hence we can always resolve the case when p, and p, have
any desired values into two cases, that of simple bending, in
which the load is proporitiomal to the bending rigidity, and that
of simple toision; in which the loads of the two spars are alike
and opposite.

For the latter case, we obtain the formula

= A (8 _ D,
P (Al .

Trom here on we will confine our attention to this case. The
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load can be so expressed that the wing will be subjected to a

linearly variable moment of the magnitude Mt = p b x.

a) The torsional angle is expressed by the equation

3 = - 4p {BcoshKh (1 - x) -
2b AK> N cosh X A 1°

-2 K A 1(sinh X M { - sinh X A x) +

+ K® 3 (1® - x®) cosh X A 1—2}.

Since
b® A N =B, + B,,

we can write:

2
9= pbo ! 1 {2 cosh kXA (1 - x)-
2 XK (B, + Bo) K® 2® 1 cosh Xx A1t

32 KMN1 (sinh X A 1 — sinh X A\ x) +
+ K® N (1% - x°) coshKKl-—B} - (20)
If we put By = K*® (B, + By), in which Bj  may be regarded

as the sum cf the torsional rigidities of the spars and of the

ribs situated within the distance b, then

2
p bl 1 {2 cosh x A (1 - x) -
2 B3 K » 1® cosh X A1t

~2 KA1 (sinh X A1l - sinh K A x) +

+K2 % (1 — x2) cosh K N 1 — 2 }.

The term p b 1°/2 Bi represents the angle of torsion

%io of a girder of the torsional rigidity Bi. We then obtain
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S _ 1
"9]'_0 (x N 1)2 cish K A 1

{2'cosh KA (L -x)-

2K ANl (sinh KA 1 - ginh X N x) +
+ K2 N (1 - x*) cosh KA1 -2} (21)

/%30 1is plotted against x/1 for different values of
KA1l in Figure 5 (Table I).

TABLE I (fig. 5)
Values of:
LA L {2 cosh X A{l-x) -2 KAl (sinh KA1
%o (KM)Z cosh K A UL
~ sinh KAx) + K® A® (1 -x®) cosh K A 1 — 3 }

x/1 KNi=1 KAl=23 XA1=3 K\1=4
0.0 0.181 0.403 0.530 0.630
0.2 0,134 0.314 0.440 04537
0.4 0.888 0.317 04325 0.404
0.8 0.046 0.124 0.191 0.247
0.8 0.014 0.038 0.057 0.08%7
1.0 0.000 0.000 0.000 0.000

From equation (31) we obtain for x =0

86 _ . . 2 - 2 tanh XAl 2
ENA 1+ 3 z - - = ’
io (XA 1) D W (KMD2 cosh KAL

As XK A 1 approaches o, this ratio approaches 1, which means
that the wing undergoes a torsion equal to that of a girder of
the same length with the torsional rigidity Bj.

%/%p is plotted against XK N 1 in Figure 6 (Table II).
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TABLE II (Fig. 8)

Values of:
do . 2 2 tanh KA1 2
st 5~ - 2
io (kA1) KAL (KX1)° cosh KA1

KAl 35 /%4 6 XA 3/%0 KN %0/%10
0.0 0.000 0.8 0.132 8.0 0.779
0.1 0.003 0.9 0.153 10.0 0.820
0.2 0.010 1.0 0.181 12.0 0.847
0.3 €.033 2.0 0.407 18,0 0.882
0.4 0.040 3,0 0,559 20.0 0.905
065 6.053 4.0 0,30 25,0 0.923
0.6 0,080 5.0 0.430 30.0 0.936
0.7 0.105 6.0 0.722 - -

b) Torsional rigidity of the wing.— According to the pre-

vious definition, the torsional rigidity of the wing is

12
B = 5935 . For the wing tip (x = 0) we obtain from equa-

tion (20)5

___pbl® o 1 tanh X N 1,

[0 J—y (222—
K° (B, + B,) 'K® N 1 K N1
+ % - = ‘
K® A% 1® cosh X A 1/
Consequently

e K? (B, + B;)

t = [, _ 28  _Ztamnkx Al _ 2 )

(2 A1) KA1 (K X 1)° cosh X N\ 1

As X M1 approaches O, By approaches o and as K A 1 ap-
proaches =, By approaches Bj. For ribs without torsional
rigidity, the torsional rigldity of the wing therefore coincides

with the sum of the torsional rigidities of the spars.
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However, if the ribs had absolute torsional rigidity, we
would have B¢ = o for an infinitely long wing, i.e., the wing
would not be distorted. Bf/B;i is plotted against X A 1 in
Figure 7 (Table I1I).

TABLE III (Fig. 7)

Values of:

By _ _ 1

Bi 2 2 tanh XAl _ 3

1+ 3 )
(XA 1) KAl (KA1)° cosh KAl
A Bf KA1 Bf KAl 3f

. BT B: M Bt
O;O o l.O 5.4:6 405 1056
0.1 400,00 1.2 4,523 5.0 1.46
0.2 100.00 1.4 3,34 5.5 1.23
0.3 47.60 1.6 3.08 6.0 1.38
0.4 25,00 1.8 2.70 8.0 1.28
0.5 19,30 2.0 3.46 10.0 1.233
0.6 13.50 2eD 2.08 12.0 1.18
0.7 9.54 3.0 1.86 16,0 1.13
0.8 7.68 3¢5 1.70 20.0 1.10
0.9 Beb4 4.0 1.60 50.0 1.06

c) Torsional rigidity of the wing sections.~ This is

B= - ¥$ = B,%Tf (see eguation (3) ). 4' is obtained from

kg

equation (21) by differentiation according to x.

¥ =y 7 {E M (1 cosh E X x - x cosh T A1) -
- sinh ¥ M (1 - x)'} (22)
Herewith we obtain ‘ -
B KAXxcoshKAl

Bi T XX (1 cosh K A X — x cosh K N 1) — sinh K A (I — x)
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In Figure 8 (Table IV) B/Bj -is plotted against X/I with
K A1 as parameter, B/B; = o when x = l, due to the assumed

rigidity of fixation of the wing root.

TABLE IV (Fig. 8)

Values of:

B _ KX xcoshXK A1
Bi XA(l coshKANx-xcoshXKAN 1) - sinh £ A (1 - X)
z ‘=1 EN1=2 KA =3
0.0 0.C00 0.000 C. 000
0.2 1.748 0.876 0.762
.4 3,570 1.632 1.340
0.6 5.620 2,536 1.753
0.8 12.488 4.710 2.980
0.9 42,300 9.000 4,330
1.0 o) (o) oo

d) Course of the torsional moments along the spars.— The

formulas B, ' and B, 8' give the torsional moments transmit-

ted by a single spar section. Table V gives us the values of

3', that is, the angle of torsion per unit length, with respect
to the mean angle of torsiom ' = - p b 1/Bj. We have

3' _ X X AlcoshK Ax - sinh X A (1 - x)

S K N 1L cosh X N 1

In Figure 9 /%' is plotted against x/1 for different
values of X X 1 (Table V).
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TABLE V (Fig. 9)
Values of:

' _x K AN1lcosh XA x - sinh K A (1 = x)

Tgr ST KX 1 cosh X\ 1
% KA1=1 KAN1=2 KN1=3 K\i=4
0.0 0,113 0.216 0.232 0.2350
0 0,114 0.228 0.281 0.280
0.4 0.113 0.245 0.317 0.355
0.6 0.097 0.238 0e331 0.418
0.8 C.064 0.17 0.270 0.358
1.0 G.000 0.000 0.000 0.000

The table and curves can be used for plotting the torsional
stress of the spars. The maximum torsional stress does not

come at the ends of the sparse.

e) Course of the shearing forces in the spar sections.-

In this case equation (19) reads

N -
Q = EL—B—Ei 3 +px

or - ’
;_9._2 1+_BA_+__§§_6'.

P X b

Introducing #' from equation (82) we obtain
Q - ; 1 (1 cosh XK A x _ sinh K N (1 - x) _ 1_} 23)
p.X + K> txcosh KA1 KAzxcoshK A1 (33)

For every spar section, the ratio Q/px determines the portion
of the external shearing forces held in equilibrium by the tan-
gential stresses in the cross section. For x = 1, Q/pl =1,

that is, the whole external load, which is applied to the spar,
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is balanced by the tangential stresses in the root section.

This indicates that

l
QX:O +o./ q d x

=O,

i.e., the resultant of the forces acting on the spars,

of their teing connected by the ribs,

words,

lieve one another.

in a

is plotted

against x/1

l1s gzero.*

In other

result

as the/

rigidly mounted wing the spars cannot mutually Tre-

Q/px

in Figure 10,

for different values of X A 1 and X (Table VI).
TABLE VI (Fig. 10)
Values of:
Q -1 + l..(l cosh X M x _ sinh K A (1 - x) _ 1)
pP-X cosh KA1 K ANxcoshX A1 /
X KN -= KA1l-=2
L K=1 K=1.2 K=1.4 K=1 K=1.2 K=1.4
OoO bnd ot - 0o -— o} - o — — [oe)
0.1 ~0.15 0.202 0.416 —B8.83 -4,44 -3400
0.3 0.45 0.618 0.720 ~2.41 ~1.37 ~0.74
Oed 0.63 0.739 04308 0.231 0.44 0.60
O0ud 0.73 0.806 04857 0.39 0.57 0.69
Ded 0.78 0.8235 0.890 0.51 0.65 0.75
0.6 0.83 0.883 0.914 0.50 0.73 0.79
0.8 0.92 0.946 0.960 0.79 0.85 0.89
1.0 1.00 1.000 1.000 1.00 1.00 1.00

f) Course of the load reaction g

along the spars.-

For

every spar section at the distance x from the wing tip, we have

the equilibrium condition
X

pX—Q=Qx=o+fqu

*First discovered by Biezeno, Koch and Koning ("Ueber die Berech-
nung von freitragenden 1?‘1uc“zeu;g,flugeln." Zeitsch. f,., angesw.
Math. u. Mech., 1926, pp. 97-105.)
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According to equation (223)

L }__{l_cosh K Ax sinh K A (1 - x) l}
P X K°lxcosh XK M1 X AMxcoshK N1

and hence

* q
Q,X:o'*‘f(ldfx:—'—z'{l
0 K

cosh X A x sinh X A (1 - x) }‘
- - X3
cosh X A 1 KAcosh XAl

By derivation according to x

g =D {K » 1 8inh X A x4 cosh K M (1 -~ x) _ 1} ]

cosh X A 1 cosh X M 1
For x = 0 (wing tip), 4q = 0 For x = 1 (wing root),
q=~g——{K>\ltanhKKl;— L -1}.
K? cosh X A 1

Figure 11 shows the curve of

_ KN 1 sinh KX x + cosh X M (1 - x)
cosh K A 1

K2 2 =1

g a

plotted against x/I for different values of X A 1. See Table
VII for the computed values. As shown by Figure 11, g indi-
cates an increase in the 1load p toward the wing tip and a de-

crease toward the wing root.
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TABLE VII (Fig. 11)

Values of:
¥k 2 -7 KA1 sinh XA x+ cosh X A (1 - x)

P cosh X A 1

— 1

% KA\L=1 K\ 1=2 KA1=3

0.0 0.000 0,000 0.000

0.3 0.010 0,080 0.23589

0.6 ~0.112 -0.157 —0.055

0.8 —-0.337 —0.547 ~0.745

g) Dependence of force Qn on X A l.— For x = O,

tion (19) gives

- 3, + B 1
Qozlbe'&o

Introducing x = 0 into equation (23) gives

b inh X A 1
,90' - b l J(l _ si X }’
K* (B, + B.) cosh X A 1 U "
whence we obtalin
Qo _ 1 ( 1 tanh K N 1
pl  X®\Ncosh X A1 KA1/

As X N 1 approaches «, Qo/pl approaches 0. Qo/pl is

equa-

plotted against X A 1 in Figure 138. The curve reaches its max—

imum value at about X N 1 = 3.
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TABLE VIII (Fig. 13)

Values of:

Qo 1 ( 1 _ tanh X A 1>
pl  X° \cosh X\ 1 KN L
KN K=1 K=1.2 K=1.4
0 0.000 0.000 0.000
1 -0.113 ~0.077 ~0.057
4 -0.213 —~0.148 ~0.108
5 -0.186 ~0.129 -0.095
6 ~0.162 -0.112 -0.083
8 -0.124 —-0.086 -0.083
10 ~0.100 ~0.089 —~0.051

Case II. Wing Subjected to a Constant Torsional Moment
Applied to Its Tip
We shall assume that the wing is subjected to the action
of a torsional moment, exerted, e.g., by two equal and opposite
forces acting on the spars. These produce the same torsional
moment Mty = P b, in every wing section. Since p =0p, =0,

the fundamental equatiom (12) now becomes
grevey K2 }\2 Ste= 0.

The general integral of this equation is

KA “KAX
8=0,¢e  +0,e =+ 0 x+C,

where C,, G, C and C, are the four integration constants.

The limiting conditions for this case are
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‘8’HX=O = o
M
UL, ¢ N8 = t
X=0 v x=0 L b .
whence we obtain
. My
Y2 Ab2 K2 N cosh K N1
0, = - i
® 2AF K2 N2 cosh X A\ 1
Cq = 1
M+ L tanh X N 1
Cyp =~ ) LZ 2 ( - 1\'
K2 A A2\ XN 1 Y}
and
i )
5 i sinh K M x — sinh X A 1 +

"% N AV cosh K M 1

+ KN(l - x) coshXK A\ 1 (24)

a) Course of the torsional angle along the wing.— If we

B, + B,
A bB®

equation (284) in the form

introduce N\ = as in equation (12), we can then write

' 1
§ = - Yt {sinhKK x -
X° (B, + B,) K'A L cosh X A 1

—sinh XA 1 +XXAN1 (1 - x) cosh XA l}f (24a)
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According to St. Venant's theory

My 1
K (B, + 3B;)

610 =

indicates the maximum angle of torsion of a girder of length 1l and

2

torsional rigidity Bj = X° (B, + B,). Then

v 1
Y50 K N 1 cosh K N1

{sinh K ANX -~
— sinh K AU+ XX (1 - x) cosh K A l.} (35)

In Figure 13, 9/9;, is plotted against x/I for various con-
stant values of X A 1., The dash-dot line here represents the
function ¥;/%i,, in which &y is the angle of torsion along
the girder,

TABLE IX (Fig. 13)

Values of:

3 =1 % _ tann K A1 + ginh ¥ A x

4o KA1 KN 1lcoshX A1l
% K\1=1 KA1=3 KAl =3
0.0 0.240 0.518 0.873
0.2 0.170 0.3753 0. 490
. Oud 0.105 0,236 0.318
0.5 0.050 0.118 0.167
0.8 0.014 0032 0.049
1.0 0.0CO 0.000 0.000

From equation (25) we obtain for x = 0
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36/%10 is plotted against K A 1 in Figure 14 (Table X). This
ratio approaches 1, as K A 1l approaches o. In this case the
wing behaves like an ordinary girder with a torsional rigidity
equal to the sum of the torsional rigidities of the spars and
ribs.

TABLE X (Fig. 14)

Values of:

o tanh K A 1
0 -1 -

3 9 4
X\ _0 KA1 o XAl e

%10 3io - o
0,0 0.000 1.0 0.240 4.5 0.779
O.1 0.003 1.2 0, 306 5.0 0.800
Ouc 0.014 1.4 0.36'7 5.5 0.818
0.3 0.024 1.6 0.436 6.0 0.835
0.4 0.050 1.8 04473 - -
005 00075 2.0 00515 hand -
006 00105 8.5 00604 — -
0.7 0.136 3.0 0.679 - -
008 0.170 3.5 0-714 - hand
0.9 0.205 4.0 0.749 - -

. s as . c Mgl
b) Torsional rigidity of the wing.- This is Bf = oo

For x = 6, equation (34a) gives

M+ L tanh X A 1
190 = =) ‘/Lt ‘{1 - }.
K° (B, + By) K N1
Hence By
Br =
1 - tanh X A 1
A1

Bf/Bi is plotted against XK A 1 in Figure 15 (Table XI).
Bf approaches «, as K A 1 approaches O.

Brf approaches B3, as K A 1 approaches o.
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[eX]
[AV]

TABLE XI (Fig. 15)

Values of:
Eg 1
By 1 tanh K A L
KA1
Bf Bf By

a1 ot KAl -+ K\l 'S
M Bi Bi Bi
0.0 o 1,0 4,18 4,5 1.28
0.1 305,00 1.2 3437 5.0 1.35
0.2 71.50 1.4 2.73 5¢5 1.32
03 35.70 1.6 2.35 5,0 1.20
0.4 BCQOO 1.8 2.11 - -
0.5 13,30 2.0 1.94 - -
006 8.58 '8.5 1.65 i hend
0.7 7.36 3.0 1.49 - -
0.8 5.90 3.5 1.40 hand -
0.9 4,88 4,0 1.33 - -

c) Torsional rigidity of the wing section.- This is

B = - Mt/8 (cf. equation (2) ). When differentiated with re-

spect to x {equation (24a) ),

M
= — L cosh X A x - cosh K A 1} (28)
K° (B, + B,) cosh K A 1 ’
Hence
B k® (B, + B:) ,
cosh X A x
cosh X A 1
and
B _B . L
K° (B, + By) Bj _cosh K N x
cosh X A 1

At the wing root, due to the assumed rigid fixation, we have
B/B; =«. B/By 1is plotted against x/1 for different values
of KX 1 in Figure 16 (Table XII).
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TABLE XII (Fig. 16)

Values of:

_g_ _ 1
Bi _cosh X A x
cosh K A 1

% KAl=1 KAL=2 KA\1=3
0.0 2.840 1,360 1.115
0.2 2950 1.400 1.143
0.4 3.350 1.5565 1.230
0.6 4,330 1.930 1.445
0.8 7500 3.18 2.230
0.9 14,300 5.75 3.780
100 [e=] [o -] o]

d) Course of the shearing forces in the spar sections along

the wing.— In this case equation (19) reads

+ B '
Q:--—___Blb 2 5% + p.

Using equation (268) for §' we obtaim

Q = —5 P {oosh KN x -~ cosh XA l}.+ P
X" cosh XA 1 )
and
Q _ 1 - 15 (l _ cosh X A x\ (27)
P X cosh X N 1/

For x = 1 (wing root) we obtaim Q/P = 1. For x =0 (wing

tip) we obtain

O

o _ 1 1 \
20 =71 - == (1 - .
P K* ( cosh X A 1/

For very long or very flexible wings this equation can be writ-

ten
1
il

O

—_—
= 4 -
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If K = 1, that is, if the torsional rigidity of the ribs is O,
we obtain Q/P = 0 for the wing tip, i.e., @Q = O. This means
that the torsional moment of the wing near its tip is balanced
only by the torsion of the spars.

In the case when the ribs have an infinite torsional rigid-
ity, Q =P for every spar section. The torsional moment is
then balanced onlyg by the shearing forces acting in the span

sections. The shearing force Q, at the wing tip for x =20

(equation (87) ) is

Qo

Pl

(1 - 1 A
\ cosh X A 1/

FHH

Qo approaches P <1 - %;), as K A 1 approaches o« .

Qo approaches P, as K approaches o,
Qo/P is plotted against K N 1 in Figure 17 (Table XIII).

TABLE XIII (Fig. 17)

Values of:

%W . L LN
P 0 E \ T cosh K N U/
1 K=1 K=1.2 K=1.4
0 1,000 1.000 1.000
1 0.648 Q0,756 0.831
2 0.3€5 0.4%90 0.626
3. 0.093 0375 0.540
4 0.036 De330 0.510
5 0.013 0.314 0,496
6 0,009 0.310 0.493
8 ~ 0,000 0. 307 0.491
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From tnese considerations it follows that an increase in
the torsional rigidity of the ribs entails an increase in the
torsional rigidity of the wing and consequently a diminution of
the torsional moment accompanied by a simultaneous increase of
the shearing forces in the spars. Q/P is plotted against x/1

at different values of X N1 and K in Figure 18 (Table XIV).

TABLE XIV (Fig. 18)

Values of:

Q-4 _ 1 _ cosh X A\ x
P . K? <1 cosh X A l>

X EXNT1 =1 KAN1=23 KNVt =23

L K=1 |K=1.3 | K=1le4 | K=1 |K=le3d [K=led | X=1 |K=1l.2 (K=1.4
0.0 10,648 | 0.756 | 0.83L | 04356 | 0.490 | 0,636 |0.,099 | 0.375 | 0.5230
0e8 j0.661 | 04765 | 04837 | 0.388 | 0.505 | 0,637 |0,117 | 0,387 | 0,550
044 ]0.700 | 04793 | 0.847 | 0,358 | 0,555 | 0.671 |0.180 | 0.230 | 0.581
0.6 10,768 | 0,839 | 0.88L | 0.487 | 0.648 | 0,735 {0,307 | 0.519 | 0,646
0.810.868 | 0,908 | 0,933 | 0.686 | 0,783 | 0.840 [0.550 | 0,687 | 0.770
1.,0]1.000 | 1.000 | 1,000 | 1,000 | 1.000 |1.000 {1,000 |1.000 | 1.000

e) Course of the supporting reaction q along the wing.-

It was found that equation (37) which, after transformation, reads

- 1 cosh X A x\
=P [1--—2(1- .
< [ K® \ cosh X A 1/]’

holds good for every spar section. Q 1is that portion of P
which is balanced in every spar section by the tangential stresses

The other part of P, namely, P ;é (1 - gggﬁ % i f“) is bal-

i

anced by the forces transmitted by the ribs to the portion of

the spar between the wing tip and the given cross section.
Therefore we may write

Tox
_ 1 cosh X A XY

Q + d x = —~ —_ —

o Of d P <1 KA1l
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by differentiating which we obtain

A ¥t A sinh X A x
q = I __é_ .
b X® cosh K A 1
4 =0 for x=0 (wing tip).
My A . : ' .
q = = tanh X M 1 for x= 1 (wing root)
q approaches O as X approaches o, that is, for
rios with absolute torsional rigidity. q %T%% is

plotted against x/1

for different values of K A 1

in Figure 19 (Table XV).

TABLE XV (Fig. 19)

Values of:

£)

q2 X® _ sinh X A x

MMt cosh K N 1
-91-‘- KAl=1 K\1=3 EN1=3
0.0 0.000 0.000 0.000
0«23 0.130 0.108 0.063
Cod 0.266 0.836 0.150
0.6 0.412 0.403 0.223
0.8 0,576 0.632 0e5423
1.0 0.763 0.964 0.996

Course of the torsional

tion (26) was transformed into

ot X2 (B, + Bs) _ cosh XK A x
cosh 7

Mt

Nl

According to St. Venant'!s theory, the ratio

-1

rnioment along the spars.— EQua-
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represents the constant increment of the torsional angle of a

cylindrical girdexr of torsional rigidity Bj. We put

Mt _ iy
R

with which equation (28) can be written

3 _ 1 - cosh X A x |
55" .cosh X A 1

TABLE XVI (Fig. 20)

Values of:

' _, _cosh KM x

SR cosh K A 1
'% K\1=1 KA1=2 KA1=3 | KAl=4
0.0 0.353 0.735 0.896 0.964
0.2 0.339 0.714 0.876 0.950
0.4 0.2399 0.644 0.820 0906
0.6 0.233 0.520 0.693 0.796
0.8 0.133 0.315 0.450 0.550
1.0 0,000 0000 0.000 0.000

This ratio is evidently proportional to the torsional mo-
ment in every section. #!'/9;' is plotted against x/1 for

different values of X A 1 in Figure 30 (Table XVI).
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Summarzry

The present paper is confined to the case of a cantilever
wing with constant spar and rib sections. Although this assump-.
tion is seldom borne out in practice, nevertheless the investi-
gation of this simple case enables us to gain a clearer idea of

how the distortion of a two-spar wing is effected.

1 B. + B
)\ = e e S -3
L

first enters into the computation as the essential parameter.

The quantity

The tables and figures show that, for small values of this pro-
portionality factor, the distortion depends chiefly on the bend-
ing rigidity of the spars. In other words, the distortion is
the result of the difference in the deflection of the two spars.
At large values of A 1, however, the wing behaves essen-
tially like a twisted girder whose torsional rigidity equals
the sum of the torsional rigidities of the spars (strengthened
to a certain extent by the torsional .rigidity of the ribs).

The second parameter

as previously remarked, expresses the effect of the torsional
rigidity of the ribs. The tables furnish accurate information
regarding this effect. For large values of M 1, this effect

can be so expressed that it is only necessary to add to the tor-
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sional rigidity of the spars the torsional rigidity of the ribs
per length unit b (distance between the spars).

All the calculations were made on the assumption that the
system of ribs can be replaced by a uniformly distributed elas-
tic union. It is a further task for theory and experimentation
to determine to what extent this assumption will give sufficient-
ly accurate results for practical purposes.

Translation by Dwight M. iiner,

National Advisory Committee
for Acronautics.
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Figs.4,5.
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Figs.8 & 9
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